Künstliche Intelligenz Schulungen

Künstliche Intelligenz Schulungen

Live-Schulungen zu künstlichen Intelligenz (KI) vor Ort demonstrieren anhand praktischer Übungen, wie KI-Lösungen zur Lösung realer Probleme implementiert werden. KI-Schulungen sind als "Live-Training vor Ort" oder "Remote-Live-Training" verfügbar. Live-Schulungen vor Ort können vor Ort beim Kunden vor Ort durchgeführt werden Österreich oder in NobleProg-Schulungszentren in Österreich . Das Remote-Live-Training wird über einen interaktiven Remote-Desktop durchgeführt. NobleProg - Ihr lokaler Trainingsanbieter.

Machine Translated

Erfahrungsberichte

★★★★★
★★★★★

AI (Artificial Intelligence) Kurspläne

Name des Kurses
Dauer
Überblick
Name des Kurses
Dauer
Überblick
14 hours
Überblick
Dieser Kurs behandelt KI (mit Schwerpunkt auf Machine Learning und Deep Learning ) in der Automotive . Es hilft zu bestimmen, welche Technologie (potenziell) in mehreren Situationen in einem Auto eingesetzt werden kann: von der einfachen Automatisierung über die Bilderkennung bis hin zur autonomen Entscheidungsfindung.
21 hours
Überblick
Dieser Kurs richtet sich an Personen, die daran interessiert sind, dem geschriebenen englischen Text Bedeutung zu entziehen, obwohl das Wissen auch auf andere menschliche Sprachen übertragen werden kann.

Der Kurs befasst sich mit der Verwendung von Texten, die von Menschen geschrieben wurden, z. B. Blog-Posts, Tweets usw.

Beispielsweise kann ein Analyst einen Algorithmus einrichten, der auf der Grundlage einer umfangreichen Datenquelle automatisch zu einer Schlussfolgerung gelangt.
21 hours
Überblick
PredictionIO ist ein Open-Source-Server für Machine Learning der auf dem neuesten Open-Source-Stack aufbaut.

Publikum

Dieser Kurs richtet sich an Entwickler und Datenwissenschaftler, die Predictive Engines für jede maschinelle Lernaufgabe erstellen möchten.
14 hours
Überblick
Die Mustererkennung ist eine Technik, mit der bestimmte Muster in einem Bild gesucht werden. Es kann verwendet werden, um das Vorhandensein bestimmter Merkmale in einem erfassten Bild zu bestimmen, z. B. das erwartete Etikett auf einem fehlerhaften Produkt in einer Fertigungslinie oder die angegebenen Abmessungen eines Bauteils. Es unterscheidet sich von der " Pattern Recognition " (die allgemeine Muster erkennt, die auf größeren Sammlungen verwandter Muster basieren) darin, dass es genau festlegt, wonach wir suchen, und uns dann mitteilt, ob das erwartete Muster vorhanden ist oder nicht.

Format des Kurses

- Dieser Kurs führt in die Ansätze, Technologien und Algorithmen ein, die im Bereich des Pattern Matching für Machine Vision .
21 hours
Überblick
PaddlePaddle (PArallel Distributed Deep LEarning) ist eine von Baidu entwickelte skalierbare Deep-Learning-Plattform In diesem instruierten Live-Training lernen die Teilnehmer, PaddlePaddle zu verwenden, um tiefes Lernen in ihren Produkt- und Serviceanwendungen zu ermöglichen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Richten Sie PaddlePaddle ein und konfigurieren Sie es Richten Sie ein Convolutional Neural Network (CNN) für die Bilderkennung und Objekterkennung ein Richten Sie ein Recurrent Neural Network (RNN) für die Stimmungsanalyse ein Richten Sie Deep Learning auf Empfehlungssystemen ein, damit Benutzer Antworten finden können Klickraten (Click-through-Rate - CTR) vorhersagen, großformatige Bildsätze klassifizieren, optische Zeichenerkennung (OCR) durchführen, Suchanfragen einordnen, Computerviren erkennen und ein Empfehlungssystem implementieren Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 hours
Überblick
In diesem Kurs wird ein praktischer Ansatz zum Unterrichten von OptaPlanner . Es stellt den Teilnehmern die Werkzeuge zur Verfügung, die zur Ausführung der Grundfunktionen dieses Werkzeugs erforderlich sind.
14 hours
Überblick
OpenNN ist eine in C ++ geschriebene Open-Source-Klassenbibliothek, die neuronale Netzwerke für maschinelles Lernen implementiert.

In diesem Kurs gehen wir auf die Prinzipien neuronaler Netzwerke ein und verwenden OpenNN, um eine Beispielanwendung zu implementieren.

Publikum
Softwareentwickler und Programmierer, die Deep-Learning-Anwendungen erstellen möchten.

Format des Kurses
Vortrag und Diskussion, begleitet von praktischen Übungen.
7 hours
Überblick
In diesem von Lehrern geführten Live-Training lernen die Teilnehmer, wie OpenNMT eingerichtet und verwendet OpenNMT , um die Übersetzung verschiedener Beispieldatensätze durchzuführen. Der Kurs beginnt mit einem Überblick über neuronale Netze, wie sie für die maschinelle Übersetzung gelten. Die Teilnehmer führen während des gesamten Kurses Live-Übungen durch, um ihr Verständnis der erlernten Konzepte zu demonstrieren und Feedback vom Kursleiter zu erhalten.

Am Ende dieser Schulung verfügen die Teilnehmer über das Wissen und die Praxis, um eine Live- OpenNMT Lösung zu implementieren.

Quell- und Zielsprachenbeispiele werden nach den Anforderungen des Publikums vorbestellt.

Format des Kurses

- Teilvorlesung, Teildiskussion, viel Praxis
14 hours
Überblick
Die Apache OpenNLP-Bibliothek ist ein auf maschinellem Lernen basierendes Toolkit zur Verarbeitung von Text in natürlicher Sprache Es unterstützt die gebräuchlichsten NLP-Aufgaben, wie z B Spracherkennung, Tokenisierung, Satzsegmentierung, Teil-Spech-Tagging, Namensentitätsextraktion, Chunking, Parsing und Koreferenzierung In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mit OpenNLP Modelle für die Verarbeitung textbasierter Daten erstellen können Als Grundlage für die Laborübungen dienen sowohl Trainingsdaten als auch kundenspezifische Datensätze Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Installieren und konfigurieren Sie OpenNLP Laden Sie bestehende Modelle herunter und erstellen Sie eigene Modelle Trainieren Sie die Modelle auf verschiedenen Sample-Datensätzen Integrieren Sie OpenNLP in vorhandene Java-Anwendungen Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 hours
Überblick
OpenFace ist Python und Torch-basierte Echtzeit-Gesichtserkennungssoftware, die auf der FaceNet-Forschung von Google basiert In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe der OpenFace-Komponenten eine Musteranwendung für die Gesichtserkennung erstellen und bereitstellen können Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Arbeiten Sie mit OpenFace-Komponenten, einschließlich dlib, OpenVC, Torch und nn4, um Gesichtserkennung, Ausrichtung und Transformation zu implementieren Wenden Sie OpenFace auf Realworld-Anwendungen wie Überwachung, Identitätsüberprüfung, Virtual Reality, Spiele und Identifizierung von Stammkunden usw an Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
28 hours
Überblick
OpenCV (Open Source Computer Vision Library: http://opencv.org) ist eine Open Source-BSD-lizenzierte Bibliothek, die mehrere Hundert Computer Vision-Algorithmen enthält.

Publikum

Dieser Kurs richtet sich an Ingenieure und Architekten, die OpenCV für Computer Vision-Projekte einsetzen OpenCV
21 hours
Überblick
Der Kurs richtet sich an diejenigen, die ein alternatives Programm zum kommerziellen MATLAB-Paket kennenlernen möchten Das dreitägige Training bietet umfassende Informationen über die Bewegung in der Umwelt und die Durchführung des OCTAVE-Pakets für Datenanalyse und technische Berechnungen Die Trainingsempfänger sind Anfänger, aber auch diejenigen, die das Programm kennen und ihr Wissen systematisieren und ihre Fähigkeiten verbessern möchten Kenntnisse in anderen Programmiersprachen sind nicht erforderlich, erleichtern aber den Lernenden den Erwerb von Wissen Der Kurs zeigt Ihnen, wie Sie das Programm in vielen praktischen Beispielen verwenden .
14 hours
Überblick
Diese auf Klassenräumen basierende Schulungssitzung enthält Präsentationen und computergestützte Beispiele sowie Fallstudien, die mit relevanten neuronalen und tiefen Netzwerkbibliotheken durchgeführt werden sollen
21 hours
Überblick
Diese Schulungssitzung im Klassenzimmer wird NLP-Techniken in Verbindung mit der Anwendung von AI und Robotics im Geschäftsleben untersuchen Die Delegierten werden computerbasierte Beispiele und Fallstudien-Lösungsübungen mit Python durchführen .
21 hours
Überblick
Es wird geschätzt, dass unstrukturierte Daten mehr als 90 Prozent aller Daten ausmachen, ein Großteil davon in Textform. Blogbeiträge, Tweets, Social Media und andere digitale Publikationen tragen immer wieder zu diesem wachsenden Datenbestand bei.

Dieser von Ausbildern geleitete Live-Kurs konzentriert sich auf die Gewinnung von Einsichten und Bedeutungen aus diesen Daten. Mit Hilfe der Bibliotheken R Language and Natural Language Processing (NLP) kombinieren wir Konzepte und Techniken aus der Informatik, der künstlichen Intelligenz und der Computerlinguistik, um die Bedeutung hinter den Textdaten algorithmisch zu verstehen. Datenbeispiele sind in verschiedenen Sprachen pro Kundenwunsch erhältlich.

Am Ende dieses Trainings werden die Teilnehmer in der Lage sein, Datensätze (große und kleine) aus unterschiedlichen Quellen zu erstellen und dann die richtigen Algorithmen anzuwenden, um ihre Bedeutung

zu analysieren und zu berichten.

Format der

- Teil-Vortrag, Teilbesprechung, schwere Hands-on-Praxis, gelegentliche Tests zur Messung des Verständnisses
21 hours
Überblick
Natural Language Generation (NLG) bezieht sich auf die Produktion von natürlichsprachlichem Text oder Sprache durch einen Computer In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe von Python hochwertigen Text in natürlicher Sprache erstellen können, indem sie ihr eigenes NLG-System von Grund auf neu erstellen Fallstudien werden ebenfalls untersucht und die relevanten Konzepte werden auf Live-Lab-Projekte zur Generierung von Inhalten angewendet Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verwenden Sie NLG, um automatisch Inhalte für verschiedene Branchen zu generieren, von Journalismus über Immobilien bis hin zu Wetter- und Sportberichten Auswählen und Organisieren von Quellinhalt, Planen von Sätzen und Vorbereiten eines Systems zum automatischen Generieren von Originalinhalten Verstehen Sie die NLG-Pipeline und wenden Sie die richtigen Techniken in jeder Phase an Verstehen Sie die Architektur eines Natural Language Generation (NLG) -Systems Implementieren Sie die am besten geeigneten Algorithmen und Modelle für die Analyse und Bestellung Ziehen Sie Daten aus öffentlich verfügbaren Datenquellen sowie aus kuratierten Datenbanken, die als Material für generierten Text verwendet werden sollen Ersetze manuelle und mühsame Schreibprozesse durch computergenerierte, automatisierte Inhaltserstellung Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 hours
Überblick
In diesem instruierten Live-Training lernen die Teilnehmer die relevantesten und fortschrittlichsten maschinellen Lerntechniken in Python kennen, während sie eine Reihe von Demo-Anwendungen mit Bild-, Musik-, Text- und Finanzdaten erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Implementieren Sie maschinelle Lernalgorithmen und Techniken zur Lösung komplexer Probleme Wenden Sie intensives Lernen und halbüberwachtes Lernen auf Anwendungen mit Bild-, Musik-, Text- und Finanzdaten an Push Python-Algorithmen auf ihr maximales Potenzial Verwenden Sie Bibliotheken und Pakete wie NumPy und Theano Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
28 hours
Überblick
Dieser Kurs vermittelt Kenntnisse in neuronalen Netzen und allgemein in maschinellem Lernalgorithmus, Deep Learning (Algorithmen und Anwendungen).

Diese Schulung konzentriert sich mehr auf die Grundlagen, hilft Ihnen jedoch bei der Auswahl der richtigen Technologie: TensorFlow , Caffe , Teano, DeepDrive, Keras usw. Die Beispiele wurden in TensorFlow .
7 hours
Überblick
Das Training richtet sich an Personen, die die Grundlagen neuronaler Netze und ihrer Anwendungen erlernen möchten.
21 hours
Überblick
In dieser auf Klassenräumen basierenden Schulungssitzung werden maschinelle Lernwerkzeuge mit (empfohlenem) Python . Die Teilnehmer erhalten computergestützte Beispiele und Fallstudien.
21 hours
Überblick
Dieser Kurs führt in Methoden des maschinellen Lernens in Robotikanwendungen ein.

Es gibt einen umfassenden Überblick über bestehende Methoden, Motivationen und Hauptideen im Kontext der Mustererkennung.

Nach einem kurzen theoretischen Hintergrund führen die Teilnehmer einfache Übungen mit Open Source (normalerweise R) oder einer anderen gängigen Software durch.
21 hours
Überblick
Ziel dieses Kurses ist es, allgemeine Kenntnisse in der Anwendung von maschinellen Lernmethoden in der Praxis zu vermitteln. Durch den Einsatz der Programmiersprache Python und ihrer verschiedenen Bibliotheken und anhand einer Vielzahl von Praxisbeispielen vermittelt dieser Kurs, wie man die wichtigsten Bausteine des maschinellen Lernens nutzt, wie man Datenmodellierungsentscheidungen trifft, die Ausgänge der Algorithmen und Validierung der Ergebnisse.

Unser Ziel ist es, Ihnen die Fähigkeiten zu vermitteln, die grundlegendsten Werkzeuge aus dem Werkzeugkasten Maschinenlerntechnik sicher zu verstehen und zu nutzen und die üblichen Fallstricke von Datenwissenschaften zu vermeiden.
14 hours
Überblick
Diese Präsenzschulung wird maschinelle Lerntechniken mit computerbasierten Beispielen und Fallbeispiel-Lösungsübungen unter Verwendung einer relevanten Programmsprache untersuchen .
14 hours
Überblick
In diesem instruierten Live-Training lernen die Teilnehmer, wie sie den Technologie-Stack von iOS Machine Learning (ML) nutzen können, während sie die Erstellung und Bereitstellung einer mobilen iOS-App durchlaufen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erstellen Sie eine mobile App, die Bildverarbeitung, Textanalyse und Spracherkennung unterstützt Greifen Sie auf vortrainierte ML-Modelle zur Integration in iOS-Apps zu Erstellen Sie ein benutzerdefiniertes ML-Modell Fügen Sie Siri Voice-Unterstützung für iOS-Apps hinzu Verstehen und verwenden Sie Frameworks wie CoreML, Vision, CoreGraphics und GamePlayKit Verwenden Sie Sprachen und Tools wie Python, Keras, Caffee, Tensorflow, Scikit lernen, libsvm, Anaconda und Spyder Publikum Entwickler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
7 hours
Überblick
Dieser Kurs richtet sich an Personen, die grundlegende Techniken des Machine Learning in praktischen Anwendungen anwenden möchten.

Publikum

Datenwissenschaftler und Statistiker, die mit maschinellem Lernen vertraut sind und wissen, wie man R programmiert. Der Schwerpunkt dieses Kurses liegt auf den praktischen Aspekten der Daten- / Modellvorbereitung, Ausführung, Post-Hoc-Analyse und Visualisierung. Ziel ist es, Teilnehmern, die an der Anwendung der Methoden bei der Arbeit interessiert sind, eine praktische Einführung in das maschinelle Lernen zu geben

Branchenspezifische Beispiele sollen das Training für das Publikum relevant machen.
14 hours
Überblick
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. Anhand der R - Programmierplattform und ihrer verschiedenen Bibliotheken sowie anhand einer Vielzahl praktischer Beispiele wird in diesem Kurs die Verwendung der wichtigsten Bausteine des Machine Learning , das Treffen von Datenmodellierungsentscheidungen sowie die Interpretation der Ergebnisse der Algorithmen und erläutert validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
14 hours
Überblick
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. In diesem Kurs wird anhand der Programmiersprache Python und ihrer verschiedenen Bibliotheken anhand einer Vielzahl praktischer Beispiele gezeigt, wie die wichtigsten Bausteine des Machine Learning , wie Datenmodellierungsentscheidungen getroffen, die Ergebnisse der Algorithmen interpretiert werden und validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
14 hours
Überblick
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. In diesem Kurs wird anhand der Programmiersprache Scala und ihrer verschiedenen Bibliotheken anhand einer Vielzahl von praktischen Beispielen gezeigt, wie die wichtigsten Bausteine des Machine Learning , wie Datenmodellierungsentscheidungen getroffen, die Ergebnisse der Algorithmen interpretiert werden und validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
28 hours
Überblick
Maschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden. R ist eine beliebte Programmiersprache in der Finanzbranche. Es wird in Finanzanwendungen eingesetzt, die von Kernhandelsprogrammen bis zu Risikomanagementsystemen reichen.

In diesem von Lehrern geführten Live-Training lernen die Teilnehmer, wie sie Techniken und Werkzeuge des maschinellen Lernens anwenden, um reale Probleme in der Finanzbranche zu lösen. Als Programmiersprache wird R verwendet.

Die Teilnehmer lernen zunächst die wichtigsten Prinzipien und setzen dann ihr Wissen in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen erstellen und sie für eine Reihe von Teamprojekten verwenden.

Am Ende dieser Schulung können die Teilnehmer:

- Verstehen Sie die grundlegenden Konzepte des maschinellen Lernens
- Lernen Sie die Anwendungen und Einsatzmöglichkeiten des maschinellen Lernens im Finanzbereich kennen
- Entwickeln Sie ihre eigene algorithmische Handelsstrategie mithilfe von maschinellem Lernen mit R

Publikum

- Entwickler
- Datenwissenschaftler

Format des Kurses

- Teilvorlesung, Teildiskussion, Übungen und viel praktisches Üben
21 hours
Überblick
Maschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden. Python ist eine Programmiersprache, die für ihre klare Syntax und Lesbarkeit bekannt ist. Es bietet eine hervorragende Sammlung bewährter Bibliotheken und Techniken für die Entwicklung maschineller Lernanwendungen.

In diesem von Lehrern geführten Live-Training lernen die Teilnehmer, wie sie Techniken und Werkzeuge des maschinellen Lernens anwenden, um reale Probleme in der Finanzbranche zu lösen.

Die Teilnehmer lernen zunächst die wichtigsten Prinzipien und setzen dann ihr Wissen in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen erstellen und sie für eine Reihe von Teamprojekten verwenden.

Am Ende dieser Schulung können die Teilnehmer:

- Verstehen Sie die grundlegenden Konzepte des maschinellen Lernens
- Lernen Sie die Anwendungen und Einsatzmöglichkeiten des maschinellen Lernens im Finanzbereich kennen
- Entwickeln Sie ihre eigene algorithmische Handelsstrategie mithilfe von maschinellem Lernen mit Python

Publikum

- Entwickler
- Datenwissenschaftler

Format des Kurses

- Teilvorlesung, Teildiskussion, Übungen und viel praktisches Üben
AI Schulung, Künstliche Intelligenz boot camp, Artificial Intelligence Abendkurse, AI (Artificial Intelligence) Wochenendkurse, AI Kurs, AI (Artificial Intelligence) Training, AI (Artificial Intelligence) Seminar, AI Seminare, Artificial Intelligence Privatkurs, AI Coaching, AI (Artificial Intelligence) Lehrer

Sonderangebote

Sonderangebote Newsletter

Wir behandeln Ihre Daten vertraulich und werden sie nicht an Dritte weitergeben.
Sie können Ihre Einstellungen jederzeit ändern oder sich ganz abmelden.

EINIGE UNSERER KUNDEN

is growing fast!

We are looking to expand our presence in Austria!

As a Business Development Manager you will:

  • expand business in Austria
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!