Vielen Dank für die Zusendung Ihrer Anfrage! Eines unserer Teammitglieder wird Sie in Kürze kontaktieren.
Vielen Dank, dass Sie Ihre Buchung abgeschickt haben! Eines unserer Teammitglieder wird Sie in Kürze kontaktieren.
Schulungsübersicht
Advanced LangGraph Architecture
- Graph topology patterns: nodes, edges, routers, subgraphs
- State modeling: channels, message passing, persistence
- DAG vs cyclic flows and hierarchical composition
Performance and Optimization
- Parallelism and concurrency patterns in Python
- Caching, batching, tool calling, and streaming
- Cost controls and token budgeting strategies
Reliability Engineering
- Retries, timeouts, backoff, and circuit breaking
- Idempotency and deduplication of steps
- Checkpointing and recovery using local or cloud stores
Debugging Complex Graphs
- Step-through execution and dry runs
- State inspection and event tracing
- Reproducing production issues with seeds and fixtures
Observability and Monitoring
- Structured logging and distributed tracing
- Operational metrics: latency, reliability, token usage
- Dashboards, alerts, and SLO tracking
Deployment and Operations
- Packaging graphs as services and containers
- Configuration management and secrets handling
- CI/CD pipelines, rollouts, and canaries
Quality, Testing, and Safety
- Unit, scenario, and automated eval harnesses
- Guardrails, content filtering, and PII handling
- Red teaming and chaos experiments for robustness
Summary and Next Steps
Voraussetzungen
- An understanding of Python and asynchronous programming
- Experience with LLM application development
- Familiarity with basic LangGraph or LangChain concepts
Audience
- AI platform engineers
- DevOps for AI
- ML architects handling production LangGraph systems
35 Stunden