TensorFlow Schulungen

TensorFlow Schulungen

Lokale, von Lehrern geleitete Live- TensorFlow Schulungen demonstrieren anhand interaktiver Diskussionen und praktischer Übungen, wie das TensorFlow System zur Erleichterung der Forschung im Bereich des maschinellen Lernens und zum schnellen und einfachen Übergang vom Forschungsprototyp zum Produktionssystem eingesetzt werden kann. TensorFlow Training ist als "Onsite-Live-Training" oder "Remote-Live-Training" verfügbar. Vor-Ort-Live-Schulungen können vor Ort beim Kunden in Berlin durchgeführt werden Österreich oder in NobleProg Firmenschulungszentren in Österreich . Das Remote-Live-Training erfolgt über einen interaktiven Remote-Desktop. NobleProg - Ihr lokaler Schulungsanbieter

Machine Translated

Erfahrungsberichte

★★★★★
★★★★★

TensorFlow Kurspläne

Name des Kurses
Dauer
Überblick
Name des Kurses
Dauer
Überblick
28 Stunden
Überblick
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
21 Stunden
Überblick
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
35 Stunden
Überblick
TensorFlow ™ ist eine Open-Source-Softwarebibliothek für die numerische Berechnung mithilfe von Datenflussdiagrammen.

SyntaxNet ist ein Framework für die Verarbeitung natürlicher Sprachen in einem neuronalen Netzwerk für TensorFlow .

Word 2Vec wird zum Lernen von Vektordarstellungen von Wörtern verwendet, die als "Worteinbettungen" bezeichnet werden. Word 2vec ist ein besonders recheneffizientes Vorhersagemodell zum Lernen von Worteinbettungen aus Rohtext. Es gibt zwei Varianten: das Continuous Bag-of- Word Modell (CBOW) und das Skip-Gram-Modell (Kapitel 3.1 und 3.2 in Mikolov et al.).

In Kombination mit SyntaxNet und Word 2Vec können Benutzer gelernte Einbettungsmodelle aus Eingaben in natürlicher Sprache generieren.

Publikum

Dieser Kurs richtet sich an Entwickler und Ingenieure, die beabsichtigen, mit SyntaxNet- und Word 2Vec-Modellen in ihren TensorFlow Diagrammen zu arbeiten.

Nach Abschluss dieses Kurses werden die Teilnehmer:

- Struktur und Einsatzmechanismen von TensorFlow verstehen
- in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen
- in der Lage sein, die Codequalität zu bewerten, Fehler zu beheben und zu überwachen
- in der Lage sein, fortgeschrittene Produktionsmethoden wie Trainingsmodelle, das Einbetten von Begriffen, das Erstellen von Grafiken und das Protokollieren zu implementieren
7 Stunden
Überblick
Die Tensor Processing Unit (TPU) ist die Architektur, die Google seit einigen Jahren intern nutzt und nun für die breite Öffentlichkeit verfügbar ist Es enthält mehrere Optimierungen speziell für die Verwendung in neuronalen Netzen, einschließlich einer gestrafften Matrixmultiplikation und 8-Bit-Ganzzahlen anstelle von 16-Bit, um geeignete Genauigkeitsniveaus zu erhalten In diesem instruierten Live-Training lernen die Teilnehmer, wie sie die Vorteile von TPU-Prozessoren nutzen können, um die Leistung ihrer eigenen KI-Anwendungen zu maximieren Am Ende des Trainings werden die Teilnehmer in der Lage sein: Trainieren Sie verschiedene Arten von neuronalen Netzwerken auf großen Datenmengen Verwenden Sie TPUs, um den Inferenzprozess um bis zu zwei Größenordnungen zu beschleunigen Verwenden Sie TPUs, um intensive Anwendungen wie Bildsuche, Cloud Vision und Fotos zu verarbeiten Publikum Entwickler Forscher Ingenieure Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
Überblick
TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 Stunden
Überblick
In diesem Kurs wird anhand konkreter Beispiele die Anwendung von Tensor Flow zur Bilderkennung erläutert

Publikum

Dieser Kurs richtet sich an Ingenieure, die TensorFlow zur Bilderkennung einsetzen TensorFlow

Nach Abschluss dieses Kurses haben die Teilnehmer folgende Möglichkeiten:

- Struktur und Einsatzmechanismen von TensorFlow verstehen
- Installation / Produktionsumgebung / Architektur Aufgaben und Konfiguration durchführen
- Codequalität beurteilen, Debugging und Überwachung durchführen
- Implementieren Sie fortschrittliche Produktionsmethoden wie Trainingsmodelle, Erstellen von Diagrammen und Protokollieren
21 Stunden
Überblick
TensorFlow ist eine 2nd Generation API von Go Ogle Open - Source - Software - Bibliothek für Deep Learning . Das System wurde entwickelt, um die Forschung im Bereich maschinelles Lernen zu vereinfachen und den Übergang vom Forschungsprototyp zum Produktionssystem schnell und einfach zu gestalten.

Publikum

Dieser Kurs richtet sich an Ingenieure, die TensorFlow für ihre Deep Learning Projekte einsetzen TensorFlow

Nach Abschluss dieses Kurses werden die Teilnehmer:

- Struktur und Einsatzmechanismen von TensorFlow verstehen
- in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen
- in der Lage sein, die Codequalität zu bewerten, Fehler zu beheben und zu überwachen
- in der Lage sein, fortgeschrittene Produktionsmethoden wie Trainingsmodelle, das Erstellen von Graphen und das Protokollieren zu implementieren
7 Stunden
Überblick
TensorFlow Serving ist ein System, mit dem Machine-Learning-Modelle (ML) in der Produktion eingesetzt werden können In diesem instruierten Live-Training lernen die Teilnehmer, wie sie TensorFlow Serving konfigurieren und einsetzen, um ML-Modelle in einer Produktionsumgebung bereitzustellen und zu verwalten Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Trainieren, exportieren und bedienen Sie verschiedene TensorFlow-Modelle Testen und implementieren Sie Algorithmen mithilfe einer einzigen Architektur und einer Reihe von APIs Erweitern Sie TensorFlow Serving, um andere Arten von Modellen als TensorFlow-Modelle zu bedienen Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
Überblick
TensorFlow Lite for Microcontrollers is a port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with limited memory.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 Stunden
Überblick
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
28 Stunden
Überblick
Deep Learning für NLP ermöglicht es einer Maschine, einfache bis komplexe Sprachverarbeitung zu erlernen Zu den derzeit möglichen Aufgaben gehören die Übersetzung von Sprachen und die Erstellung von Bildunterschriften für Fotos DL (Deep Learning) ist eine Teilmenge von ML (Machine Learning) Python ist eine beliebte Programmiersprache, die Bibliotheken für Deep Learning für NLP enthält In diesem instruierten Live-Training lernen die Teilnehmer, Python-Bibliotheken für NLP (Natural Language Processing) zu verwenden, während sie eine Anwendung erstellen, die eine Reihe von Bildern verarbeitet und Untertitel generiert Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Entwerfen und kodieren Sie DL für NLP mit Python-Bibliotheken Erstellen Sie Python-Code, der eine im Wesentlichen große Sammlung von Bildern liest und Schlüsselwörter generiert Erstellen Sie Python-Code, der Untertitel aus den erkannten Keywords generiert Publikum Programmierer mit Interesse an Linguistik Programmierer, die ein Verständnis für NLP (Natural Language Processing) suchen Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
Überblick
TensorFlow Lite is an open source deep learning framework for executing models on mobile and embedded devices with limited compute and memory resources.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 Stunden
Überblick
TensorFlow.js is a JavaScript framework for machine learning. TensorFlow.js enables users to build and train machine learning models directly in JavaScript.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 Stunden
Überblick
TensorFlow ist eine beliebte und maschinelles Lernen Bibliothek entwickelt von Go Ogle für tiefe Lernen, numerische Berechnung und Groß maschinellen Lernen. TensorFlow 2.0, veröffentlicht im Januar 2019, ist die neueste Version von TensorFlow und enthält Verbesserungen in TensorFlow auf eifrige Ausführung, Kompatibilität und API-Konsistenz.

Dieses von Lehrern geleitete Live-Training (vor Ort oder per Fernzugriff) richtet sich an Entwickler und Datenwissenschaftler, die Tensorflow 2.0 verwenden möchten, um Prädiktoren, Klassifikatoren, generative Modelle, neuronale Netzwerke usw. zu erstellen.

Am Ende dieser Schulung können die Teilnehmer:

- Installieren und konfigurieren Sie TensorFlow 2.0.
- Verstehen Sie die Vorteile von TensorFlow 2.0 gegenüber früheren Versionen.
- Bauen Sie Deep-Learning-Modelle auf.
- Implementieren Sie einen erweiterten Bildklassifikator.
- Stellen Sie ein Deep-Learning-Modell für Cloud-, Mobil- und IoT-Geräte bereit.

Format des Kurses

- Interaktiver Vortrag und Diskussion.
- Viele Übungen und Übungen.
- Praktische Implementierung in einer Live-Laborumgebung.

Anpassungsoptionen für den Kurs

- Um ein individuelles Training für diesen Kurs anzufordern, kontaktieren Sie uns bitte, um dies zu arrangieren.
- Um mehr über TensorFlow zu erfahren, besuchen Sie bitte: https://www.tensorflow.org/
28 Stunden
Überblick
Dieser Kurs vermittelt Kenntnisse in neuronalen Netzen und allgemein in maschinellem Lernalgorithmus, Deep Learning (Algorithmen und Anwendungen).

Diese Schulung konzentriert sich mehr auf die Grundlagen, hilft Ihnen jedoch bei der Auswahl der richtigen Technologie: TensorFlow , Caffe , Teano, DeepDrive, Keras usw. Die Beispiele wurden in TensorFlow .
14 Stunden
Überblick
TensorFlow is an open source machine learning library. TensorFlow provides users the ability to use and create artificial intelligence for detecting and predicting fraud.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.

By the end of this training, participants will be able to:

- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 Stunden
Überblick
Embedding Projector ist eine Open-Source-Webanwendung zur Visualisierung der Daten, die zum Trainieren von maschinellen Lernsystemen verwendet werden Erstellt von Google, ist es ein Teil von TensorFlow Dieses instruierte Live-Training stellt die Konzepte hinter Embedding Projector vor und führt die Teilnehmer durch die Einrichtung eines Demo-Projekts Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erfahren Sie, wie Daten von maschinellen Lernmodellen interpretiert werden Navigieren Sie durch 3D- und 2D-Ansichten von Daten, um zu verstehen, wie ein maschineller Lernalgorithmus sie interpretiert Verstehen Sie die Konzepte hinter Embedding und ihre Rolle bei der Darstellung mathematischer Vektoren für Bilder, Wörter und Zahlen Erkunden Sie die Eigenschaften einer bestimmten Einbettung, um das Verhalten eines Modells zu verstehen Wenden Sie Embedding Project auf reale Anwendungsfälle an, wie zum Beispiel das Erstellen eines Song-Empfehlungssystems für Musikliebhaber Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
Überblick
Publikum

Dieser Kurs ist für Deep Learning Forscher und Ingenieure geeignet, die verfügbare Tools (meist Open Source) zur Analyse von Computerbildern verwenden möchten

Dieser Kurs enthält Arbeitsbeispiele.
35 Stunden
Überblick
Dieser Kurs beginnt mit dem Erlernen von konzeptionellen Kenntnissen in neuronalen Netzen und allgemein in maschinellem Lernalgorithmus und Tiefenlernen (Algorithmen und Anwendungen).

Teil 1 (40%) dieses Trainings konzentriert sich mehr auf Grundlagen, hilft Ihnen jedoch bei der Auswahl der richtigen Technologie: TensorFlow , Caffe , Theano, DeepDrive, Keras usw.

In Teil 2 (20%) dieses Trainings wird Theano vorgestellt - eine Python-Bibliothek, die das Schreiben von Deep-Learning-Modellen erleichtert.

Part-3 (40%) die Ausbildung intensiv auf Basis von Tensorflow würde - 2nd Generation API von Go Ogle Open - Source - Software - Bibliothek für Deep Learning . Die Beispiele und Handys würden alle in TensorFlow .

Publikum

Dieser Kurs richtet sich an Ingenieure, die TensorFlow für ihre Deep Learning Projekte einsetzen TensorFlow

Nach Abschluss dieses Kurses werden die Teilnehmer:

-

ein gutes Verständnis für tiefe neuronale Netze (DNN), CNN und RNN haben

-

Struktur und Einsatzmechanismen von TensorFlow verstehen

-

in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen

-

in der Lage sein, die Codequalität zu bewerten, Fehler zu beheben und zu überwachen

-

in der Lage sein, fortgeschrittene Produktionsmethoden wie Trainingsmodelle, das Erstellen von Graphen und das Protokollieren zu implementieren

Zukünftige TensorFlow Kurse

TensorFlow Schulung, TensorFlow boot camp, TensorFlow Abendkurse, TensorFlow Wochenendkurse, TensorFlow Kurs, TensorFlow Training, TensorFlow Seminar, TensorFlow Seminare, TensorFlow Privatkurs, TensorFlow Coaching, TensorFlow Lehrer

Sonderangebote

Sonderangebote Newsletter

Wir behandeln Ihre Daten vertraulich und werden sie nicht an Dritte weitergeben.
Sie können Ihre Einstellungen jederzeit ändern oder sich ganz abmelden.

EINIGE UNSERER KUNDEN

is growing fast!

We are looking for a good mixture of IT and soft skills in Austria!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions