Schulungsübersicht

Introduction to Vision-Language Models

  • Overview of VLMs and their role in multimodal AI
  • Popular architectures: CLIP, Flamingo, BLIP, etc.
  • Use cases: search, captioning, autonomous systems, content analysis

Preparing the Fine-Tuning Environment

  • Setting up OpenCLIP and other VLM libraries
  • Dataset formats for image-text pairs
  • Preprocessing pipelines for vision and language inputs

Fine-Tuning CLIP and Similar Models

  • Contrastive loss and joint embedding spaces
  • Hands-on: fine-tuning CLIP on custom datasets
  • Handling domain-specific and multilingual data

Advanced Fine-Tuning Techniques

  • Using LoRA and adapter-based methods for efficiency
  • Prompt tuning and visual prompt injection
  • Zero-shot vs. fine-tuned evaluation trade-offs

Evaluation and Benchmarking

  • Metrics for VLMs: retrieval accuracy, BLEU, CIDEr, recall
  • Visual-text alignment diagnostics
  • Visualizing embedding spaces and misclassifications

Deployment and Use in Real Applications

  • Exporting models for inference (TorchScript, ONNX)
  • Integrating VLMs into pipelines or APIs
  • Resource considerations and model scaling

Case Studies and Applied Scenarios

  • Media analysis and content moderation
  • Search and retrieval in e-commerce and digital libraries
  • Multimodal interaction in robotics and autonomous systems

Summary and Next Steps

Voraussetzungen

  • An understanding of deep learning for vision and NLP
  • Experience with PyTorch and transformer-based models
  • Familiarity with multimodal model architectures

Audience

  • Computer vision engineers
  • AI developers
 14 Stunden

Teilnehmerzahl


Price per participant (excl. VAT)

Kommende Kurse

Verwandte Kategorien