Machine Learning for Banking (with Python) Schulung

Alle Preise zzgl. MwSt

Kurs Code

mlbankingpython_

Dauer

21 hours (üblicherweise 3 Tage inklusive Pausen)

Voraussetzungen

  • Experience with Python programming
  • Basic familiarity with statistics and linear algebra

Überblick

Machine Learning ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden. Python ist eine Programmiersprache, die für ihre klare Syntax und Lesbarkeit bekannt ist. Es bietet eine hervorragende Sammlung bewährter Bibliotheken und Techniken für die Entwicklung maschineller Lernanwendungen.

In diesem von Lehrern geleiteten Live-Training lernen die Teilnehmer, wie sie Techniken und Werkzeuge des maschinellen Lernens anwenden, um reale Probleme in der Bankenbranche zu lösen.

Die Teilnehmer lernen zunächst die wichtigsten Prinzipien und setzen dann ihr Wissen in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen erstellen und sie für eine Reihe von Teamprojekten verwenden.

Publikum

  • Entwickler
  • Datenwissenschaftler

Format des Kurses

  • Teilvorlesung, Teildiskussion, Übungen und viel praktisches Üben

Machine Translated

Schulungsübersicht

Introduction

  • Difference between statistical learning (statistical analysis) and machine learning
  • Adoption of machine learning technology and talent by finance and banking companies

Different Types of Machine Learning

  • Supervised learning vs unsupervised learning
  • Iteration and evaluation
  • Bias-variance trade-off
  • Combining supervised and unsupervised learning (semi-supervised learning)

Machine Learning Languages and Toolsets

  • Open source vs proprietary systems and software
  • Python vs R vs Matlab
  • Libraries and frameworks

Machine Learning Case Studies

  • Consumer data and big data
  • Assessing risk in consumer and business lending
  • Improving customer service through sentiment analysis
  • Detecting identity fraud, billing fraud and money laundering

Hands-on: Python for Machine Learning

  • Preparing the Development Environment
  • Obtaining Python machine learning libraries and packages
  • Working with scikit-learn and PyBrain

How to Load Machine Learning Data

  • Databases, data warehouses and streaming data
  • Distributed storage and processing with Hadoop and Spark
  • Exported data and Excel

Modeling Business Decisions with Supervised Learning

  • Classifying your data (classification)
  • Using regression analysis to predict outcome
  • Choosing from available machine learning algorithms
  • Understanding decision tree algorithms
  • Understanding random forest algorithms
  • Model evaluation
  • Exercise

Regression Analysis

  • Linear regression
  • Generalizations and Nonlinearity
  • Exercise

Classification

  • Bayesian refresher
  • Naive Bayes
  • Logistic regression
  • K-Nearest neighbors
  • Exercise

Hands-on: Building an Estimation Model

  • Assessing lending risk based on customer type and history

Evaluating the performance of Machine Learning Algorithms

  • Cross-validation and resampling
  • Bootstrap aggregation (bagging)
  • Exercise

Modeling Business Decisions with Unsupervised Learning

  • When sample data sets are not available
  • K-means clustering
  • Challenges of unsupervised learning
  • Beyond K-means
  • Bayes networks and Markov Hidden Models
  • Exercise

Hands-on: Building a Recommendation System

  • Analyzing past customer behavior to improve new service offerings

Extending your company's capabilities

  • Developing models in the cloud
  • Accelerating machine learning with GPU
  • Applying Deep Learning neural networks for computer vision, voice recognition and text analysis

Closing Remarks

Erfahrungsberichte

★★★★★
★★★★★

Verwandte Kategorien

Kombinierte Kurse

Sonderangebote

Sonderangebote Newsletter

Wir behandeln Ihre Daten vertraulich und werden sie nicht an Dritte weitergeben.
Sie können Ihre Einstellungen jederzeit ändern oder sich ganz abmelden.

EINIGE UNSERER KUNDEN

is growing fast!

We are looking for a good mixture of IT and soft skills in Austria!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions